

Unveiling Biodiversity: A Critical Review of Morpho-molecular Identification in Crabs

Ilias Ahmed^{1,2,*} , Mst. Sharmin Nahar² , Md. Sherazul Islam² , Bipul Kumar Sen²

¹Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh-2202.

²Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.

How to Cite

Ahmed, I., Nahar, Mst. S., Islam, Md. S., Sen, B.K. (2025). Unveiling Biodiversity: A Critical Review of Morpho-molecular Identification in Crabs. *Genetics of Aquatic Organisms*, 9(3), GA937. <https://doi.org/10.4194/GA937>

Article History

Received 04 August 2025

Accepted 23 December 2025

First Online 25 December 2025

Corresponding Author

E-mail: iliasahmed762@gmail.com

Keywords

Morpho-molecular identification

Crabs

Morphological analysis

Molecular markers

Species identification

Abstract

Crabs are a diverse and ecologically important group of crustaceans found in both marine and freshwater habitats. Accurate species identification is essential for understanding biodiversity, ecological balance, and conservation management. Traditional morphological taxonomy, based on traits such as carapace shape, cheliped structure, and setal pattern, remains the foundation of classification but is often limited by intraspecific variation, phenotypic plasticity, and cryptic species. To overcome these limitations, this review integrates morphological and molecular approaches to assess their combined effectiveness in crab identification. A systematic review of 117 peer-reviewed studies published between 2000 and 2025 was conducted following PRISMA guidelines. Molecular tools, including DNA barcoding using COI and 16S rRNA genes, ITS-1, and RAPD markers, provide higher accuracy and reveal cryptic diversity. The integration of morphological and molecular data enhances taxonomic resolution, confirms species boundaries, and enables detection of invasive and new taxa. Despite these advances, challenges persist due to incomplete genetic databases, lack of standardized protocols, and limited access to affordable sequencing technologies. This review highlights the need for harmonized methodologies and global collaboration to improve crab taxonomy. A holistic approach combining ecological, behavioral, and genetic data is essential for effective biodiversity assessment and conservation.

Introduction

Crabs, belonging to the infraorder *Brachyura*, represent one of the most diverse and ecologically significant groups of decapod crustaceans, with approximately 700 genera and 7,000 species distributed across 98 families (Kaestner, 1970; Ng, 1988; Peter et al., 2008; Tsang et al., 2014). Their remarkable adaptability has allowed them to thrive in an astonishing array of environments, including abyssal seas, coral reefs, rocky shores, tropical rainforests, volcanic vents, and even arid deserts (Davie, 2021). This ecological versatility,

coupled with their complex behaviors and unique physiological traits, underscores the importance of crabs in marine and terrestrial ecosystems. Although crabs are ecologically and biologically diverse, their accurate identification at the species level remains a persistent challenge. Traditional taxonomy, which relies primarily on morphological and morphometric traits such as carapace shape, cheliped morphology, and body proportions, often struggles to distinguish closely related or cryptic species (Klinbunga et al., 2000; Fazhan et al., 2017b; Waiho et al., 2018).

Additionally, body size variations further distinguish these species, with *S. serrata* being the largest and *S. olivacea* the smallest and most robust due to their adaptation to low-salinity intertidal habitats (Fazhan et al., 2017a). Morphological and morphometric analysis has long been the cornerstone of crab taxonomy and species identification. Farmers, crabbers, and researchers alike rely on physical traits such as carapace shape, cheliped morphology, and body proportions to differentiate species. However, while these traits are useful, they can sometimes be ambiguous due to overlapping features or environmentally induced variations (Waiho, Fazhan & Ikhwanuddin, 2016b). For example, closely related species within the genus *Scylla* exhibit subtle morphological differences that require detailed and precise measurements to achieve accurate identification (Ikhwanuddin et al., 2011; Fazhan et al., 2017b). Many brachyuran species exhibit high morphological similarity, particularly among closely related taxa and juvenile individuals, making traditional morphological approaches unreliable in some cases (Schubart et al., 2001; Yamasaki et al., 2011). Additionally, crabs play a critical role in marine bioinvasions, necessitating precise species identification to assess and manage their impact on estuarine and coastal ecosystems (Brockerhoff & McLay, 2011). To address these challenges, molecular tools have proven invaluable in crab identification and biodiversity assessment. DNA barcoding techniques, which analyze a standardized region of the mitochondrial cytochrome c oxidase I (COI) gene, have proven highly effective in distinguishing closely related species. Additionally, these techniques facilitate the identification of larval, juvenile, and adult stages of crabs by providing genetic confirmation of species identity, even when morphological differences obscure taxonomic classification (Hebert et al., 2003; Schindel & Miller, 2005). This approach has been successfully applied to a wide range of animal taxa, including fish, birds, mollusks, and crustaceans, revealing a clear barcoding gap between intraspecific and interspecific genetic divergence (Davison et al., 2009; Feng et al., 2011). Furthermore, molecular analyses incorporating additional genetic markers, such as mitochondrial 16S rRNA and nuclear genes, have enhanced our ability to resolve taxonomic ambiguities in crabs (Markert et al., 2014; Yamasaki et al., 2011).

The objective of this critical review is to compile and synthesize current knowledge on morpho-molecular identification techniques in crabs, emphasizing their applications in biodiversity assessment, taxonomy, and related biological fields. This review aims to enhance understanding of crab diversity and resolve taxonomic ambiguities by integrating traditional morphology with molecular approaches and evaluating key genetic markers. Species-level identification remains hindered by morphological variability, cryptic taxa, and inconsistent

molecular references. This review bridges these gaps through a crab-specific framework linking diagnostic traits to marker selection, sampling, analysis, and harmonized protocols. Unlike earlier works that isolate morphology or barcoding or treat decapods broadly, this review provides a PRISMA-guided synthesis (to Jan 2025), a traits-to-markers crosswalk and a phylogenetic scaffold. we aim to highlight the vast, still-unexplored biodiversity of crabs and encourage standardized molecular protocols for accurate identification, conservation, and sustainable utilization of these ecologically and economically important organisms.

Methods

Literature Search Strategy

This systematic review was conducted following the *Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020)* guidelines. A comprehensive literature search was performed across five databases: Scopus, Web of Science, PubMed, ScienceDirect, and Google Scholar, covering publications up to January 2025. The search strategy combined Boolean operators, wildcards, and controlled vocabulary (where available) to ensure thorough retrieval of studies on crab morpho-molecular identification. The primary search string used was:

(“crab” OR “Brachyura” OR “crustacean”) AND
(“molecular identification” OR “DNA barcoding” OR
“genetic marker” OR “phylogenetic analysis”) AND
(“morphology” OR “morphometric” OR “taxonomy”)

This core query was adapted for each database to align with specific indexing rules. Filters were applied to include only *peer-reviewed articles* and *English-language publications*. Reference lists of selected papers were manually screened to identify additional relevant studies (backward and forward citation searching). All searches were conducted initially in August 2024 and last updated on January 15, 2025. The search results were exported to EndNote for duplicate removal, after which titles and abstracts were screened.

Study Selection and Eligibility Criteria

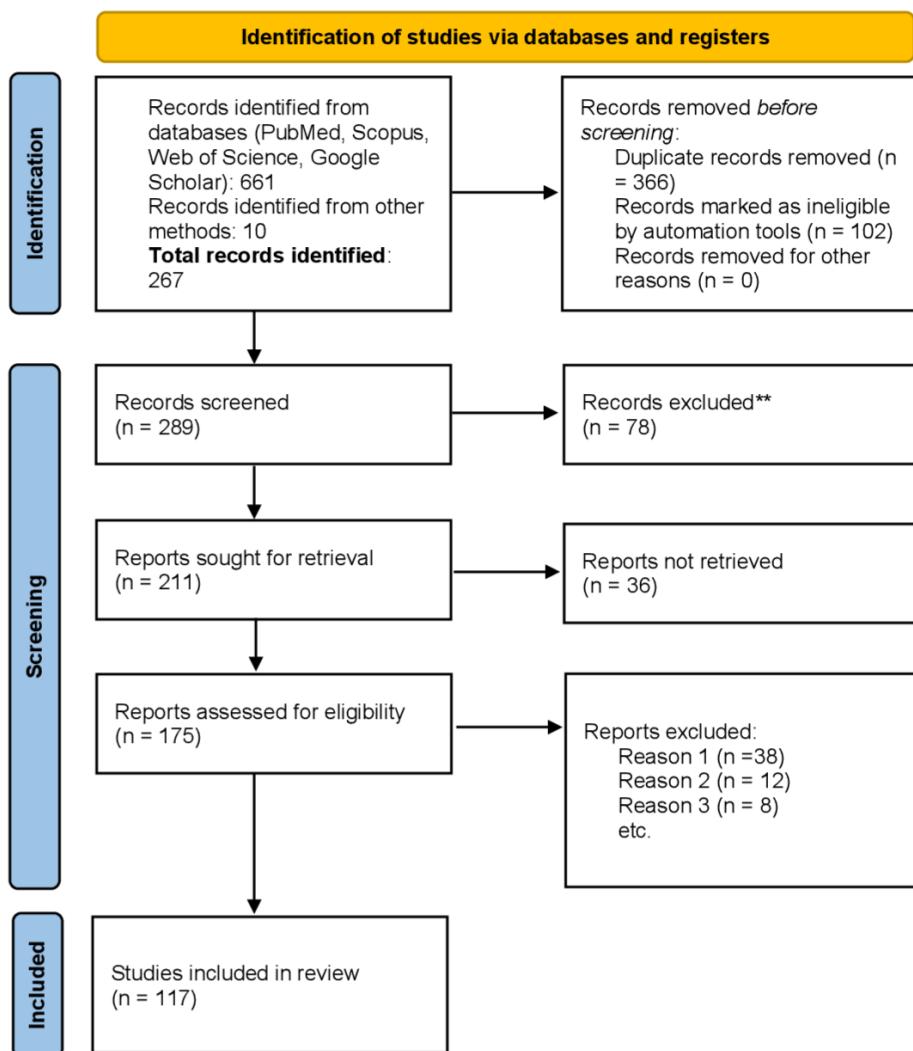
The inclusion and exclusion process adhered to predefined criteria to ensure methodological consistency. Eligible studies were required to: Conduct morphological identification of crab species; Employ molecular markers (e.g., COI, 16S rRNA, ITS, or nuclear genes) for species identification; Focus on taxonomy, phylogenetic relationships, or biodiversity assessment; Be published in peer-reviewed journals or well-documented preprints with full methodological details. Studies were excluded if they: Focused solely on ecological, physiological, or aquaculture aspects without taxonomic analysis; Lacked molecular or morphological

data; Were review papers, conference abstracts, or theses without full data access.

Two independent reviewers (Author A and Author B) screened all titles and abstracts. Discrepancies were resolved through discussion, and unresolved cases were adjudicated by a third expert reviewer (Author C). Inter-reviewer agreement was quantified using Cohen's kappa ($\kappa = 0.87$), indicating high reliability.

Screening and PRISMA Flow Diagram

A total of 757 records were identified across databases and reference lists. After removing 86 duplicates, 671 records were screened. Of these, 289 full-text articles were assessed for eligibility, and 154 were excluded for not meeting inclusion criteria (e.g., lacking molecular data, incomplete methods, or non-peer-reviewed sources). Finally, 117 studies were included in the qualitative synthesis. The full selection process is summarized in Figure 1 (PRISMA Flow Diagram), following PRISMA 2020 standards with four main phases: *Identification*, *Screening*, *Eligibility*, and *Inclusion*.


Data Extraction and Management

Data extraction was performed using a structured Excel template. For each included study, the following data were collected: Author(s), year, and study location; Crab species examined and taxonomic group; Morphological methods and diagnostic traits used; Molecular markers and primer sequences; Sequencing platforms and analytical tools; Key taxonomic findings and limitations. When necessary, corresponding authors were contacted to obtain missing or unclear methodological details. All extracted data were cross-verified by two reviewers for consistency.

Quality Assessment

The quality of the included studies was assessed using a modified version of the Newcastle-Ottawa Scale for observational studies and experimental research (Luchini et al., 2017). Studies were evaluated on five dimensions:

(1) clarity of morphological description,

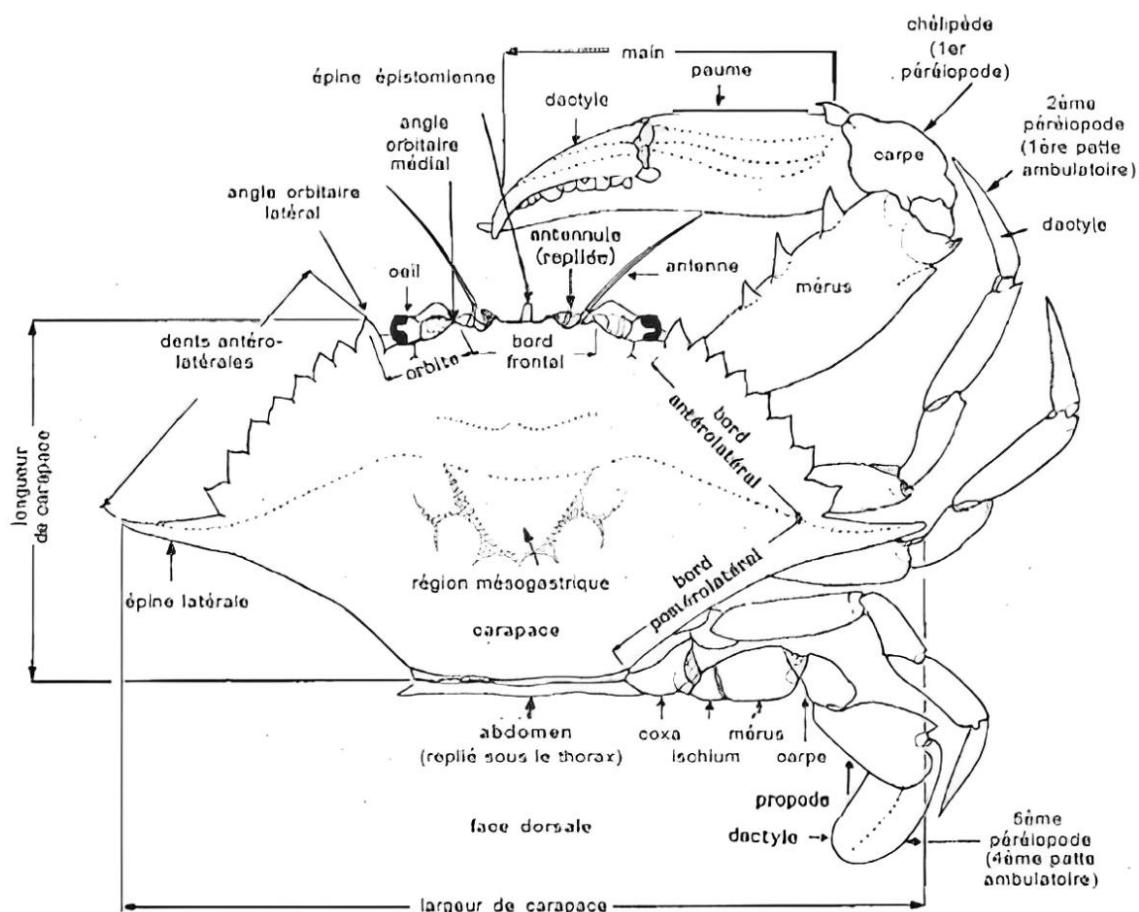
Figure 1. Screening literature using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA).

- (2) appropriateness of molecular markers,
- (3) accuracy of taxonomic classification,
- (4) sample size and design adequacy, and
- (5) statistical robustness.

Each criterion was rated on a 3-point scale (0-2), and studies scoring below 6/10 were subjected to sensitivity analysis or excluded.

Data Synthesis and Analysis

Due to heterogeneity among methodologies, statistical meta-analysis was not feasible. Instead, a comprehensive descriptive and qualitative synthesis was undertaken using data from 117 reviewed studies. Frequencies of molecular markers (COI, 16S rRNA, ITS-1, NaK, 18S rDNA, RAPD/RFLP, and NGS/eDNA), taxonomic groups, and geographic distributions were compiled in Microsoft Excel and analyzed in RStudio (v4.5.1). Bar charts, pie charts, and temporal trend plots illustrated marker usage patterns, while a heat map highlighted associations between marker type and research purpose (e.g., species identification, phylogeny, or hybrid detection). Results revealed a dominance of mitochondrial genes (COI, 16S) and a gradual rise in genomic tools. Biases, knowledge gaps, and methodological inconsistencies were critically evaluated


to identify research needs in crab morpho-molecular taxonomy.

Morphological Identification

Morphological identification has traditionally formed the cornerstone of crab taxonomy, relying on diagnostic traits such as carapace structure, cheliped morphology, and coloration patterns (Keenan et al., 1998; Ng, 1998). While these features remain fundamental, their reliability and reproducibility have been increasingly questioned because of phenotypic plasticity, sexual dimorphism, and observer bias (Waiho et al., 2016; Fazhan et al., 2017). Therefore, a critical comparison of both classical and modern morphometric methods is essential to strengthen taxonomic precision.

Classical Morphological Approaches

Traditional taxonomy has historically depended on linear morphometrics and qualitative traits such as the number of anterolateral spines, frontal-lobe shape, and cheliped proportions (Stephenson, 1972; Serène, 1984). These features are often measured from standard anatomical landmarks of the carapace and appendages (Figure 2; Farrag, 2022), although they can vary with environmental and ontogenetic conditions, leading to

Figure 2. General Morphometric measurement and description of the common form of crabs (Farrag, 2022).

intraspecific overlap (Ikhwanuddin et al., 2011; Naim et al., 2020). *Measurement inconsistency is another limitation:* caliper-based readings and subjective interpretation can introduce inter-observer error (Reiter et al., 2025). Vermeiren et al., (2021) reported calibration protocols or error margins, making reproducibility difficult. To improve reliability, researchers are urged to employ replicate measurements, calibration against reference specimens, and inter-observer precision tests.

Modern Morphometric and Image-Based Techniques

Recent decades have seen the rise of geometric morphometrics and image-analysis-based tools that capture the geometry of structures through landmark coordinates instead of simple distances (Grinang et al., 2019; Xu et al., 2023). Luo, (2024) reported that software such as tpsDig, SHAPE, and MorphoJ allow quantitative assessment of carapace shape variation via principal-component and canonical-variates analyses, providing statistical measures of shape differentiation. Beyond geometric morphometrics, machine-learning image classifiers and deep-learning convolutional neural networks (CNNs) have shown promise in automating species recognition from photographs of carapaces or chelipeds (Malik et al., 2024). These computational tools can minimize human bias and scale to large ecological datasets, supporting citizen-science biodiversity monitoring.

Integrative Reliability, Applications, and Future Directions

Morphological and molecular comparisons have revealed varying degrees of congruence. In *Scylla* and *Charybdis*, morphological identifications differ from molecular results in up to 30% of cases (Barua et al., 2021; Markert et al., 2014), often due to hybridization or environmental effects. Conversely, geometric morphometric datasets show greater alignment with DNA-based species boundaries (Sultana et al., 2022), suggesting that statistically defined shape variables more accurately reflect genetic divergence. Representative examples of the morphological and morphometric techniques used across crab taxa, together with their diagnostic challenges which are summarized in Table 1. This comparative overview underscores how diverse morphological approaches, from scanning electron microscopy to geometric and molecular analyses, are increasingly combined to resolve species boundaries, especially in taxa exhibiting cryptic diversity. To ensure reliability in future morphological studies, a comprehensive framework should include:

- Standardized and error-quantified measurement protocols;

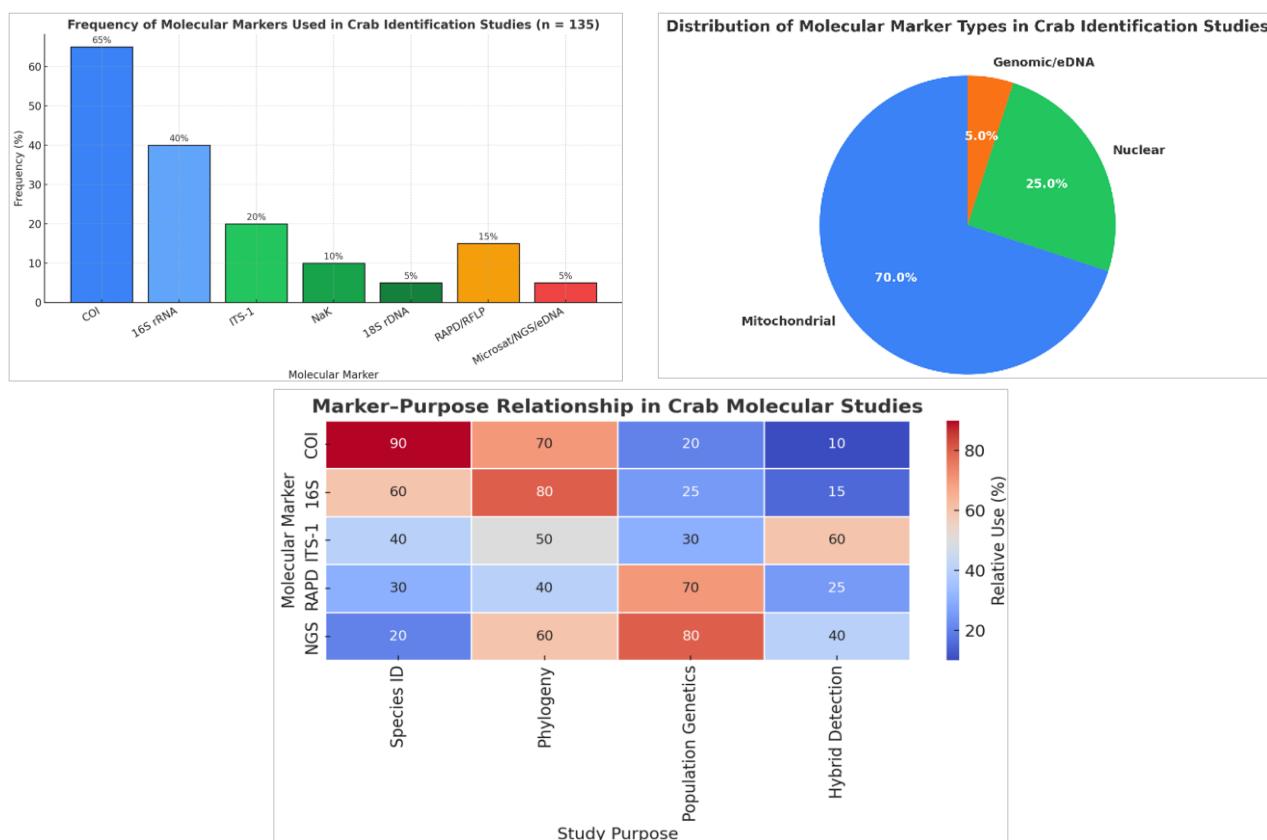
- Molecular barcoding (COI, 16S rRNA) for validation; and
- Cross-validation of morphological clusters with genetic lineages.

Finally, developing digital image repositories and morpho-molecular databases that link shape descriptors to barcode data will preserve morphological evidence as a quantitative and verifiable pillar of modern integrative taxonomy.

Molecular Identification

Molecular identification has transformed crab taxonomy by supplementing traditional morphological approaches with precise genetic tools. Over the past two decades, molecular markers have been extensively applied to resolve taxonomic ambiguities, detect cryptic diversity, and validate morphologically similar taxa. Instead of focusing on laboratory steps, this section synthesizes how these methods have been used across studies, highlighting marker preferences, success rates, and remaining limitations.

Patterns in Molecular Approaches


Across the 117 reviewed studies, mitochondrial genes overwhelmingly dominate crab molecular identification efforts. The COI gene is the most frequently applied marker, appearing in roughly 65% of studies due to its universality and high interspecific divergence. COI barcoding effectively distinguished *S. serrata*, *S. tranquebarica*, and *S. olivacea* (Ma et al., 2012; Mandal et al., 2021) and remains the “gold standard” for *Decapoda*. The 16S rRNA gene follows in popularity (\approx 40% of studies), often paired with COI to strengthen phylogenetic resolution (Markert et al., 2014). Nuclear markers such as ITS-1, NaK, and 18S rDNA appear in about 20% of publications, typically for resolving recent divergences or hybridization events (Imai et al., 2004; Mandal et al., 2014b). Although less common, microsatellites, NGS, and eDNA are emerging in population-level and environmental studies (Li et al., 2021). Collectively, these findings indicate a gradual shift from single-gene barcoding toward multilocus and high-throughput frameworks (Figure 3A-B).

Methodological Variations and Tissue Sources

As summarized in Table 2, DNA extraction and tissue selection practices varied considerably among studies. Muscle tissue from chelae or ambulatory legs was most frequently used, followed by hepatopancreas and gill samples. About 70% of studies employed either the phenol-chloroform or Proteinase K methods, achieving comparable DNA purity to commercial kits such as Qiagen DNeasy®. Extraction success depended more on tissue preservation (ethanol vs. frozen) than on extraction method type. RNA-based studies, such as *Uca*

Table 1. Morphological Identification Techniques for Different Crab Species

Species	Morphological Traits	Techniques and Tools	Taxonomic Challenges	Reference
Scylla spp.	Frontal lobe spine shapes (distinct among species)	Molecular markers (internal transcribed spacer 1, 16S rDNA), Fourier transformation, SHAPE software, Resemble.js	Difficulty in species identification in early developmental stages due to soft tissue extraction limitations	(Cruz-Abeledo et al., 2018; PARVIN et al., 2018)
Scylla species from the Philippines	Geometric patterns in swimming and walking legs, asymmetry in chelipeds, continuity in frontal lobe spines	Morphological species identification, Morphometric techniques, Molecular techniques (ITS-1 fragments)	High intraspecific variation, Continuity of diagnostic features, Misidentification due to morphological ambiguities	(Vincecruz-Abeledo & Lagman, 2018).
Brachyuran crabs (general)	Zoeal morphology, detailed setation of mouthparts, larval stages. Adaptations to mid-water habitat, family and sub-family level features in zoeae. Variability in zoeal groupings at higher taxonomic levels (e.g., family, sub-family). Proposed revision of Brachyura systematics in relation to zoeal features	Morphological analysis, setation study. Comparative analysis of larval features. Phylogenetic analysis. Zooplankton collection, species identification	Past failure to categorize zoeae corresponding to adult groupings. Convergence in adult characters; failure to recognize ecological adaptations. Potential need for radical rearrangement based on zoeal features. Groups based on evolution grades rather than phylogenetic lines	(Rice, 1980)
Grapsus albolineatus, Ozium truncates, Uca (Galasimus) tetragonon	Shape, color, and size; triangular abdomen (female), tapered triangle abdomen (male)	Morphological examination, field observation	Difficulty in differentiating between closely related species based on morphology alone	(Rustikasari et al., 2021)
River Crab (<i>Potamonautes sidneyi</i> , <i>Potamonautes unispinus</i>)	Presence of epibranchial teeth, gonopod 1 shape, 4 diagnostic loci	Electrophoretic analysis (11 enzyme systems)	Morphological similarity with other river crabs, requiring genetic analysis to differentiate, Distinguishing between two distinct forms of river crabs in South Africa	(Stewart & Cook, 1998)
Blue crab (<i>Callinectes sapidus</i>)	Aesthetasc tuft divided into mesial and lateral halves; presence of aesthetascs and new sensilla	Scanning Electron Microscopy, Behavioral Tests	Differentiating between sensilla types; functional confirmation of sensilla	(Gleeson, 1982).
Charybdis japonica	Diagnostic traits include carapace shape and features, chela structure, and other intertidal adaptations.	Mitochondrial DNA sequencing (cytochrome oxidase 1 gene), morphological analysis.	Overlap in traits with native and non-native species; identifying juvenile or cryptic forms.	(Smith et al., 2003)
Eriocheir sinensis	Carapace shape changes over time; relative distortion score highlights differences after "bathing" culture.	Geometric morphometrics; 35 established landmarks; stepwise discriminant analysis; visualization tools.	Morphological convergence incomplete after one month; distinguishing "bathed" crabs from original populations.	(Xu et al., 2023)
Hemigrapsus penicillatus	Smaller setal patches on male chelae; dark spots on cephalothorax, abdomen, mandibles, and limbs.	Starch gel electrophoresis, morphological analysis, visual pigmentation inspection.	Morphological similarity with sibling species; distinguishing females when pigmentation fades.	(Takano et al., 1997; Mingkid et al., 2006; Asakura & Watanabe, 2005; Markert et al., 2014)
Hemigrapsus takanoi	Larger setal patches on male chelae; absence of dark spots; distinct first pleopod morphology in males.	Field surveys, microscopic examination, morphometric measurements, habitat mapping.	Intermediate traits in overlapping zones; males with conflicting pigmentation and morphological features.	(Mingkid et al., 2006; Asakura & Watanabe, 2005; Markert et al., 2014)
Pagurus spp.	Variation in shell occupancy, chelae size and shape, and carapace morphology across species.	Phylogenetic analysis using mitochondrial (16S, COI) and nuclear markers; sequence concatenation.	Resolving taxonomic positions of newly described species and unassigned morpho-groups.	(Sultana et al., 2022)
Charybdis (Charybdis) hellerii	Carapace dentation, cheliped shape, and color patterns distinctive for identification.	Morphological description, COI gene sequencing (DNA barcoding).	Overlap in morphological traits with closely related species; reliance on genetic confirmation.	(Abbas et al., 2016)
Portunus (Portunus) pelagicus	Broad carapace, distinctive blue coloration in males, and pereiopod shape variations.	Morphological identification and mitochondrial COI gene analysis.	Phenotypic plasticity due to environmental factors; distinguishing regional populations.	(Abbas et al., 2016; Hidayani et al., 2018)
Liocarcinus corrugatus	Corrugated carapace with defined ridges; first record in the Egyptian Red Sea.	Morphological description, mitochondrial COI sequencing for confirmation.	First report in this region; previously known in other oceans, requiring broader comparisons.	(Abbas et al., 2016)
Atergatis roseus	Smooth carapace, distinctive rose-like coloration, and robust chelipeds.	Morphological traits supported by DNA barcoding using COI gene sequencing.	Challenges in distinguishing juveniles from other Atergatis species; habitat-based phenotypic variations.	(Abbas et al., 2016)

Figure 3. Molecular identification trends in crab studies (n = 117): (A) Frequency of molecular markers used, showing COI dominance; (B) Proportional distribution of mitochondrial, nuclear, and genomic/eDNA markers; and (C) Heatmap linking marker types with research objectives such as species identification, phylogeny, and biodiversity monitoring.

Table 2. DNA Extraction Methods and Quality Assessment in Crab Species

Species Name	Tissue Used	DNA Extraction Method	DNA Quality Check	Fluorescent Dye	Final DNA Concentration	Reference
<i>Scylla spp.</i>	Alcohol-preserved muscle tissue (~25 mg)	Proteinase K and phenol-chloroform - Isoamyl alcohol method	Electrophoresis on 0.7% agarose gel	Non-mutagenic (EZ Vision In-Gel Solution, Amresco, USA; 0.1 µl/ml)	Diluted to 75 ng/µl with sterile double-distilled water	(Mandal et al., 2014; Mandal et al., 2021)
<i>U. pugilator</i>	Eyes of male fiddler crabs (n = 5)	TRIzol reagent (manufacturer's protocol, Gibco BRL, Gaithersburg, MD, USA)	Synthesized cDNA from RNA; PCR amplification	No fluorescent dye used for RNA extraction	cDNA synthesized from ~1 µg of RNA, PCR amplification used for opsin gene sequences	(Rajkumar et al., 2010)
<i>Uca forcipata</i> and <i>Uca triangularis</i>	Genomic DNA from fiddler crab tissue (collected from Surabaya, Indonesia)	DNA kit extraction (Molecular Physiology Laboratory PKNU, Busan, Korea)	Molecular identification via BLASTN (99% certainty)	No fluorescent dye used during extraction	Not specified, used for BLASTN analysis	(Andriyono et al., 2019)
<i>Charybdis japonica</i>	Crab muscle tissue (22 individuals)	Proteinase K-based method	PCR-based with five ONT primers, electrophoresis in 1.4% agarose gel	Ethidium bromide (EtBr) for gel electrophoresis	5 ng of template DNA per PCR reaction	(Yoon, 2022)
<i>Potamona spp.</i>	Muscle tissue from ambulatory leg (<2 mm)	QIAGEN; BioSprint 15	PCR amplification with LCO1-1490/HCO1-2198 primers; confirmed via electrophoresis	-	Eluted in 200 µl AE buffer; 1–2 µl template DNA used in PCR	(Rezaei et al., 2022)

pugilator opsin gene amplification (Rajkumar et al., 2010), remain uncommon, reflecting the dominance of DNA-level taxonomy. These methodological insights emphasize that while protocols differ, most yield reliable material for amplification and sequencing when coupled with rigorous quality checks and contamination control (see Table 2).

Primer Design and Marker Optimization

Table 3 details the range of primers applied across taxa. Universal COI primers designed by Folmer et al. (1994) were used in nearly half of the studies, while species-specific primers (e.g., *Scy-F/Scy-R* from Ma et al., 2012) increased diagnostic precision for *Scylla* species. ITS-1 primers (Chu et al., 2001) proved particularly valuable for detecting hybridization and intra-genus variation, whereas mitochondrial 16S primers (Imai et al., 2004) supported phylogenetic reconstructions. The prevalence of COI-based primer sets highlights an ongoing trade-off between universality and specificity: universal primers facilitate cross-study comparison, but taxon-specific primers offer higher resolution for closely related or regionally endemic crabs (see Table 3).

Success Rates and Comparative Insights

Success rates in species identification correlate strongly with marker choice and DNA quality. Studies using COI and 16S achieved over 90% accuracy, whereas RAPD and RFLP markers often fell below 70%. Ma et al. (2012) and Naim et al. (2020) reported clear barcode gaps among *Scylla* species, but hybrid populations occasionally blurred boundaries. Similarly, research on *Hemigrapsus* and *Charybdis* (Markert et al., 2014; Abbas et al., 2016) demonstrated that COI outperformed ITS-1

and RFLP in resolving species complexes. Geographic patterns were also evident: Indo-Pacific species exhibited higher COI divergence than Atlantic or temperate taxa, reflecting regional evolutionary rates (Figure 3C).

Data Reliability, Databases, and Analytical Tools

Approximately 80% of the studies relied on Sanger sequencing, valued for cost-effectiveness and accuracy in single-specimen work. The recent transition to NGS and metabarcoding platforms (Li et al., 2021) enables large-scale biodiversity monitoring. Nearly all studies compared sequences against GenBank or BOLD, yet about 25% of entries lacked voucher data or metadata, leading to potential misidentifications (Meiklejohn et al., 2019; Ari & Arikan, 2016). Analytical tools such as MEGA, RAxML, and BEAST were most frequently used for tree construction, reflecting a shift toward Bayesian and maximum-likelihood frameworks (see Table 4).

Limitations and Future Directions

Persistent limitations include primer bias, incomplete reference databases, and contamination from degraded tissues. DNA degradation, especially in preserved museum material, continues to hinder amplification (Zimmermann et al., 2008). Hybridization and incomplete lineage sorting can also produce discordant morphological and molecular signals. Recent developments such as multilocus barcoding, cross-marker validation, and integration with ecological metadata are beginning to mitigate these issues. Future crab biodiversity research should prioritize standardized marker sets, regional reference databases, and

Table 3. Details of Primers Used in PCR Amplification

Primer Name	Sequence (5' → 3')	Target Gene	Additional Notes	Reference
L-SP-1-3'	ATTTAGCTGCGGTCTTCATC	ITS-1 Region of ribosomal DNA	Used for amplifying ITS-1 region.	(Chu et al., 2001; Imai et al., 2004)
H-SP-1-5'138	CACACCGCCCGTCGCTACTA	ITS-1 Region of ribosomal DNA	-	(Chu et al., 2001; Imai et al., 2004)
Scy-F	GATACSCGAGCTTAYTTACATC	COI (Cytochrome Oxidase Subunit I)	Designed for species-specific PCR.	(Ma et al., 2012)
Scy-R	TAGGATTAAGRGAYAACCTGTAAA	(COI)	Produces a 325 bp product for all species.	(Ma et al., 2012)
ScyS-R	AATAATCCTAAAGCCCATAATATA	COI (Species-specific for <i>S. serrata</i>)	Amplifies a 138 bp product when paired with Scy-F.	(Ma et al., 2012)
ScyO-R	GTGTCATGTAGGATAATATCGATG	COI (Species-specific for <i>S. olivacea</i>)	Amplifies a 212 bp product when paired with Scy-F.	(Ma et al., 2012)
ScyP-R	AACATAGTGGAAATGGGCTACG	Species-specific fragment	-	(Mandal et al., 2014a)
LCO1490	GGTCAACAAATCATAAAGATATTGG	(COI)	Universal primer for DNA barcoding; amplifies a 709 bp fragment.	(Folmer et al., 1994)
HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	(COI)	-	(Folmer et al., 1994)
mtd10	TTGATTTTGGTCATCCAGAAGT	(COI)	Heavy strand primer; used for insects and <i>Scylla</i> species; amplifies a 597 bp fragment.	(Roehrdanz, 1993)
C/N2769	TTAAGTCCTAGAAATGTTGRGGGA	(COI)	Light strand primer; used for insects and <i>Scylla</i> species.	(Gopurenko et al., 1999)

quantitative performance analyses comparing marker reliability and success rates.

Overall, molecular identification in crabs has evolved from simple COI barcoding to complex, multi-gene, and genomic frameworks. While COI remains the benchmark, integrating mitochondrial (COI, 16S) and nuclear (ITS-1, NaK) markers yields the highest

taxonomic confidence. Properly curated datasets such as those outlined in Tables 2-4 are fundamental for sustaining accurate, reproducible, and globally comparable molecular taxonomy. Continued refinement of databases, primer design, and sequencing platforms will enhance our understanding of crab biodiversity and evolutionary history (Figures 3A-3C).

Table 4. Molecular Markers and Methodological Advances in Crab Species Identification

Markers Used	Methodological Advances	Species Identified	Reference
COI (cytochrome oxidase)	DNA extraction using phenol-chloroform procedure; PCR amplification with Folmer et al. (1994) primers; Sequencing using Big Dye Terminator v3.1 and ABI3730 Sequencer; Pairwise genetic distances calculated using MEGA6; Phylogenetic analysis via BEAST with Markov chain simulations.	<i>Portunus trituberculatus</i> , <i>Atergatis floridus</i> , <i>Atergatis integerimus</i> , <i>Liocarcinus holsatus</i> , <i>Tachypleus tridentatus</i> , <i>T. gigas</i> , and five crab species from the Northern Red Sea (KF793329, KF793328, KF793332, KF793331, KF793330).	(Abbas et al., 2016)
	DNA barcode analysis, maximum parsimony analysis with statistical parsimony networks (95% and 90% connection limits)	<i>H. penicillatus</i> sensu Yamasaki, <i>H. takanoi</i>	(Markert et al., 2014)
	DNA barcoding with Kimura 2-parameter (K2P) distance analysis; identification of barcoding gap; maximum-likelihood phylogenetic tree; PCR-based identification method	<i>Scylla paramamosain</i> , <i>Scylla serrata</i> , <i>Scylla tranquebarica</i> , <i>Scylla olivacea</i>	(Ma et al., 2012)
	PCR amplification; sequence alignment; BLAST similarity search; pairwise genetic distance calculation; phylogenetic tree construction	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. tranquebarica</i> , <i>S. paramamosain</i>	(Mandal et al., 2021; Mandal et al., 2014a)
	PCR-RFLP using restriction enzymes (HinfI, NlaIV, BsaJI) effectively distinguished the four <i>Scylla</i> species by their characteristic fragment patterns. However, this method cannot reliably identify hybrids or cryptic taxa due to shared restriction sites and recombination. Hence, sequencing of mitochondrial COI or nuclear markers (e.g., ITS-1, microsatellites) is recommended for more accurate species differentiation.	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. tranquebarica</i> , <i>S. paramamosain</i>	(Mandal et al., 2021)
	Sequence analysis; barcode gap analysis (ABGD); pairwise genetic distance (Tamura-Nei statistic); phylogenetic tree construction using NJ and MP methods	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. tranquebarica</i> , <i>S. paramamosain</i>	(Naim et al., 2020)
16S rDNA	Partial mitochondrial COI sequences amplified (485-634 bp). Phylogenetic analysis using NJ and ML trees. Submissions to GenBank for improved COI reference.	<i>Uca forcipata</i> , <i>Uca triangularis</i>	(Andriyono et al., 2019)
	Statistical parsimony network; p-distance comparison of haplotypes	<i>H. penicillatus</i> sensu Yamasaki, <i>H. takanoi</i>	(Markert et al., 2014)
	PCR-RFLP using Dral and HindIII double digestion for species identification.	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. paramamosain</i> , <i>S. tranquebarica</i>	(Imai et al., 2004)
	Phylogenetic analysis using molecular data to challenge existing biogeographic and evolutionary assumptions.	<i>Fiddler crabs (Uca spp., ancestral clades, and derived forms)</i>	(Sturmbauer et al., 1996)
NaK (631 bp)	Molecular analysis revealed three distinct clades. Correlation of genetic data with geological events (e.g., Amazon outflow, Isthmus of Panama closure).	<i>Minuca burgersi</i>	(Thurman et al., 2021)
	Statistical parsimony network; separation by one polymorphic site (third codon position)	<i>H. penicillatus</i> sensu Yamasaki, <i>H. takanoi</i>	(Markert et al., 2014)
	PCR amplification of ITS-1 region; Variation in product fragment length used to distinguish species.	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. paramamosain</i> , <i>S. tranquebarica</i>	(Imai et al., 2004)
ITS-1 (Internal Transcribed Spacer-1)	PCR amplification; electrophoretic fragment analysis; species-specific fragment size patterns	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. tranquebarica</i> , <i>S. paramamosain</i>	(Mandal et al., 2021)
	Species-specific banding pattern for identification of mud crab species based on cheliped morphology (two spines vs. one spine).	<i>S. serrata</i> , <i>S. tranquebarica</i> , <i>S. olivacea</i> , <i>S. paramamosain</i>	(Mandal et al., 2014a)
PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism)	Three PCR-RFLP markers developed for confirming the taxonomic status of Indian mud crab species.	<i>S. serrata</i> , <i>S. olivacea</i>	(Mandal et al., 2014b)
PCR-RFLP (Dral and HindIII)	Double digestion of 16S rDNA used to identify all four species by fragment length patterns.	<i>S. serrata</i> , <i>S. olivacea</i> , <i>S. paramamosain</i> , <i>S. tranquebarica</i>	(Imai et al., 2004)
RAPD (Random Amplified Polymorphic DNA)	16 species-specific RAPD markers identified using 4 arbitrary primers (OPA2, OPA14, UBC122, UBC456) on 179 individuals.	<i>S. serrata</i> , <i>S. olivacea</i>	(Mandal et al., 2014b)
18S rDNA (1814 bp)	Complete sequence analysis; no variation detected	Not resolved at species level	(Markert et al., 2014)

Integration of Morphological and Molecular Approaches

The integration of morphological and molecular approaches has advanced crab taxonomy by improving species resolution and minimizing misidentification. Morphological traits such as carapace shape, cheliped dentition, and gonopod structure remain fundamental but can be influenced by phenotypic plasticity, ontogenetic variation, and environmental factors. Molecular markers, particularly COI and 16S rRNA, provide independent verification of species boundaries, complementing morphology-based identifications (Ma et al., 2012; Mandal et al., 2021). For example, *S. serrata*, *S. tranquebarica*, and *S. olivacea*, morphologically similar species were clearly distinguished through COI barcoding (Ma et al., 2012; Mandal et al., 2021). Likewise, mitochondrial data resolved the *Hemigrapsus penicillatus*, *H. takanoi* complex (Markert et al., 2014). Comparative assessments suggest 70–80% congruence between morphological and molecular identifications, with 20–30% discrepancies linked to cryptic diversity, hybridization, or incomplete lineage sorting (Li et al., 2021). Molecular phylogenies of *Charybdis* and *Portunus* clarified ambiguous morphotypes unresolved by morphology alone (Abbas et al., 2016; Mandal et al., 2014b), whereas *Macrophthalmus* species exhibited partial mismatch due to morphological convergence (Imai et al., 2004). Furthermore, *Uca pugilator* demonstrated functional congruence between opsin gene variation and eye morphology (Rajkumar et al., 2010). As summarized in Table 5, these studies collectively demonstrate that integrating morphological and molecular evidence provides a robust, complementary framework for accurate species delineation and evolutionary interpretation (Ma et al., 2012; Imai et al., 2004; Rajkumar et al., 2010; Mandal et al., 2014b; Markert et al., 2014; Abbas et al., 2016; Mandal et al., 2021; Li et al., 2021; Bravo et al., 2021).

Challenges in Identification

Despite significant progress in integrative taxonomy, crab identification still faces multiple challenges that affect both morphological and molecular

approaches. Traditional morphology-based taxonomy is often constrained by phenotypic plasticity, sexual dimorphism, and ontogenetic variation, which can blur species boundaries and lead to inconsistent diagnoses across regions and observers. In some genera, such as *Scylla* and *Charybdis*, overlapping morphotypes make reliable identification difficult without molecular corroboration (Ma et al., 2012; Mandal et al., 2021). Furthermore, the deterioration of diagnostic features in museum and preserved specimens limits their usefulness for comparative analyses (Zimmermann et al., 2008). Molecular identification, while more objective, introduces its own complexities. A major issue is the incompleteness and inaccuracy of public databases such as GenBank and BOLD, where up to 25% of crustacean entries lack voucher information or contain misidentified sequences (Meiklejohn et al., 2019). Primer bias, DNA degradation, and cross-contamination during extraction and amplification further reduce accuracy (Imai et al., 2004; Markert et al., 2014; Alberdi et al., 2019). The rapid rise of Next-Generation Sequencing (NGS) and metabarcoding approaches introduces additional challenges related to bioinformatic errors, data curation, and metadata standardization (Li et al., 2021). Addressing these issues requires the development of standardized marker sets, curated regional reference databases, and strict voucher-based validation of sequence data. A concise overview of the main obstacles and potential solutions is provided in Table 6, which outlines the primary limitations affecting crab identification and strategies for their mitigation.

Conclusion

This review underscores the transformative role of molecular methodologies in redefining crab taxonomy and systematics. Over the past two decades, the progressive integration of genetic tools with traditional morphology has yielded unprecedented taxonomic resolution, enabling the detection of cryptic lineages and the re-evaluation of long-debated species boundaries. Among the suite of molecular markers, mitochondrial COI and 16S rRNA genes remain the principal barcoding loci, while nuclear ITS-1, NaK, and 18S rDNA markers provide complementary insights into

Table 5. Comparative summary of studies integrating morphological and molecular identification in crabs.

Species/Group	Molecular Marker(s)	Morphological Basis	Outcome / Congruence	Reference
<i>Scylla serrata</i> / <i>S. tranquebarica</i>	COI	Carapace and gonopod traits	High congruence (>95%)	Ma et al. (2012); Mandal et al. (2021)
<i>Hemigrapsus penicillatus</i> / <i>H. takanoi</i>	COI, 16S	Carapace, coloration	Full resolution; cryptic divergence	Markert et al. (2014)
<i>Charybdis</i> spp.	ITS-1, COI	Carapace width and spination	Molecular data resolved ambiguities	Abbas et al. (2016)
<i>Macrophthalmus</i> spp.	16S	Carapace granulation	Partial mismatch due to convergence	Imai et al. (2004)
<i>Uca pugilator</i>	Opsin gene	Eye and chela morphology	Functional congruence	Rajkumar et al. (2010)

Table 6. Summary of key challenges in morphological and molecular identification of crabs, their impacts, and proposed solutions. Emphasis is placed on improving database reliability, voucher validation, and high-throughput data curation for reproducible taxonomy

Challenge Type	Specific Challenge	Impact on Identification	Suggested Solution / Mitigation Strategy	References
Morphological	Phenotypic plasticity and environmental variation	Misidentification of morphotypes; overlap in diagnostic characters	Integrate morphometrics with molecular barcoding; use population-level comparisons	Ma et al. (2012); Mandal et al. (2021)
	Ontogenetic and sexual dimorphism	Inconsistent species diagnosis across life stages	Employ developmental series and sex-specific character analyses	Mandal et al. (2014b); Markert et al. (2014)
	Degradation of preserved specimens	Loss of diagnostic traits in museum collections	Digitize specimens and pair with genetic vouchers	Zimmermann et al. (2008)
Molecular	Primer bias and amplification errors	Low PCR success or inconsistent amplification among taxa	Optimize taxon-specific primers; perform cross-marker validation	Imai et al. (2004); Abbas et al. (2016)
	Misidentifications and missing metadata in databases (GenBank, BOLD)	Incorrect species assignments; unreliable sequence references	Require voucher-linked submissions; regional database curation	Meiklejohn et al. (2019)
Genomic	DNA degradation and contamination	False positives; incomplete sequences	Improve sample preservation; apply contamination controls	Markert et al. (2014); Mandal et al. (2021)
	Bioinformatic errors and NGS data curation	Spurious OTUs; inflated diversity estimates	Standardize pipelines and metadata reporting in NGS workflows	Li et al. (2021)
Integrative	Lack of standardized protocols across studies	Reduced reproducibility and comparability	Develop unified barcoding guidelines and inter-lab validation	Li et al. (2021); Mandal et al. (2021)

recent divergence and hybridization. Collectively, these approaches have demonstrated that integrative frameworks combining morphology and molecular data yield the highest diagnostic accuracy and phylogenetic reliability. Nevertheless, critical impediments persist. Phenotypic plasticity, incomplete or erroneous sequence databases, primer bias, and heterogeneous methodological standards continue to constrain the reproducibility of results. The emergence of high-throughput sequencing (HTS) and metabarcoding technologies, although revolutionary, introduces novel challenges concerning bioinformatic consistency, metadata curation, and taxonomic validation. Addressing these complexities demands a paradigm shift toward greater methodological coherence and open-data governance. Future efforts should prioritize the standardization of multilocus marker sets (e.g., COI+16S+ITS-1) and the establishment of globally curated reference databases explicitly linked to voucher specimens, geospatial metadata, and digital morphological archives. The development of harmonized analytical pipelines, encompassing sampling, sequencing, and phylogenetic reconstruction that will ensure reproducibility and comparability across studies. Ultimately, a truly integrative taxonomic framework, uniting morphological, molecular, and ecological dimensions, is imperative for sustaining reliable biodiversity assessments and advancing evolutionary understanding within the *Decapoda*.

Ethical Statement

This research utilizes secondary data from publicly available databases and literature, strictly adhering to

ethical standards in data collection, analysis, and reporting. The use of existing data complies with the terms of use from the original sources, with all necessary citations provided. No unauthorized access or data manipulation has occurred. The study upholds the confidentiality and privacy of individuals, aligning with ethical guidelines to promote responsible research conduct.

Funding Information

The funding agency had no role in the design of the study.

Author Contribution

Ilias Ahmed: Concept development, overall data analysis and presentation, validation, editing the draft, and writing the original draft; Mst. Sharmin Nahar: Editing the draft; Md. Sherazul Islam: Editing the draft; Bipul Kumar Sen: Editing the draft.

Conflict of Interest

The author disclosed no conflict of interest to anybody or any organization. The funding agency had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Acknowledgements

The author gratefully acknowledges the University Grants Commission (UGC), Bangladesh for supporting

the research under a collaborative project, "Morpho-molecular identification of fiddler crabs *Uca rosea* and *Uca Urvillei* from Sundarbans, Bangladesh". Additionally, we extend our appreciation to Md. Belal Hossen and Md. Aktaruzzaman for their valuable contributions to data collection and review of the manuscript.

References

Abbas, E. M., Abdelsalam, K. M., Mohammed-Geba, K., Ahmed, H. O., & Kato, M. (2016). Genetic and morphological identification of some crabs from the Gulf of Suez, Northern Red Sea, Egypt. *The Egyptian Journal of Aquatic Research*, 42(3), 319-329.

Alberdi, A., Aizpuru, O., Bohmann, K., Gopalakrishnan, S., Lynggaard, C., Nielsen, M., & Gilbert, M. T. P. (2019). Promises and pitfalls of using high-throughput sequencing for diet analysis. *Molecular ecology resources*, 19(2), 327-348.

Andriyono, S., Pramono, H., & Kim, H. W. (2019, February). Molecular identification and phylogenetic reconstruction of two fiddler crabs (*Uca forcipata* and *Uca triangularis*). In IOP Conference Series: Earth and Environmental Science (Vol. 236, No. 1, p. 012036). IOP Publishing.

Angulo-Preckler, C., Hempel, C., Frappi, S., Lim, K. K., Terraneo, T., Steinke, D., ... & Duarte, C. M. (2024). Unveiling Biodiversity: The current status of marine species barcoding in Red Sea Metazoans. *Global Ecology and Conservation*, e03339.

Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., ... & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: a review. *Molecular biology reports*, 50(1), 761-775.

Apte, A., & Daniel, S. (2009). PCR primer design. *Cold Spring Harbor Protocols*, 2009(3), pdb-ip65.

Ari, S., & Arikán, M. (2016). Next-generation sequencing: advantages, disadvantages, and future. *Plant omics: Trends and applications*, 109-135.

Asakura, A., & Watanabe, S. (2005). Hemigrapsus takanoi, new species, a sibling species of the common Japanese intertidal crab *H. penicillatus* (Decapoda: Brachyura: Grapoidea). *Journal of Crustacean Biology*, 25(2), 279-292.

Barua, A., Afrin, T., Akhand, A. A., & Ahmed, M. S. (2021). Molecular characterization and phylogenetic analysis of crabs (Crustacea: Decapoda: Brachyura) based on mitochondrial COI and 16S rRNA genes. *Conservation Genetics Resources*, 13(3), 291-301.

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., ... & Das, I. (2007). Cryptic species as a window on diversity and conservation. *Trends in ecology & evolution*, 22(3), 148-155.

Bravo, H., Cheng, C. L., Iannucci, A., Natali, C., Quadros, A., Rhodes, M., ... & Fratini, S. (2021). A DNA barcode library for mangrove gastropods and crabs of Hong Kong and the Greater Bay Area reveals an unexpected faunal diversity associated with the intertidal forests of Southern China. *BMC Ecology and Evolution*, 21, 1-15.

Bremner, J. (2008). Species' traits and ecological functioning in marine conservation and management. *Journal of Experimental Marine Biology and Ecology*, 366(1-2), 37-47.

Brockerhoff, A., & McLay, C. (2011). Part II, human mediated spread of Alien crabs. In B. S. Galil, P. F. Clark & J. T. Carlton (Eds.), In the wrong place alien marine crustaceans: distribution, biology and impacts. *Invading nature Springer series in invasion ecology*, 6 (pp. 27-106).

C.P. Keenan, P.J.F. Davie, D.L. Mann. A revision of the genus *Scylla* de Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae) *Raff. Bull. Zool.*, 46 (1998), pp. 217-246

Chen, L., Cai, Y., Zhou, G., Shi, X., Su, J., Chen, G., & Lin, K. (2014). Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens. *PLoS one*, 9(2), e88886.

Chu KH, Li CP, Ho HY (2001) The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea. *Mar Biotechnol* 3:355-361

Cruz-Abeledo, C. C. V., Ting, K., & Ablan-Lagman, M. C. (2018). Identification of a species diagnostic character for instar and juvenile mud crabs (Genus *Scylla*). *Aquaculture*, 491, 205-209.

Davie, P. J. (2021). *Crabs: A global natural history*. Princeton University Press: 1-224.

Davison, A., Blackie, R.L.E., Scothern, G.P., 2009. DNA barcoding of stylommatophoran land snails: a test of existing sequences. *Mol. Ecol. Resour.* 9, 1092-1101.

de León, G. P. P., & Nadler, S. A. (2010). What we don't recognize can hurt us: a plea for awareness about cryptic species. *Journal of parasitology*, 96(2), 453-464.

Doyle, J. J. (1992). Gene trees and species trees: molecular systematics as one-character taxonomy. *Systematic Botany*, 144-163.

Evans, N. (2018). Molecular phylogenetics of swimming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classification and suggests a single derived origin of symbiotic taxa. *PeerJ*, 6, e4260.

Farrag, M. M. (2022). Biometrics of aquatic animals. *Recent Advances in Biometrics*, 10.

Fazhan H, Waiho K, Darin Azri MF, Al-Hafiz I, Wan Norfaizza WI, Megat FH, Jasmani S, Ma H, Ikhwanuddin M. 2017a. Sympatric occurrence and population dynamics of *Scylla* spp. in equatorial climate: effects of rainfall, temperature and lunar phase. *Estuarine, Coastal and Shelf Science* 198:299-310

Fazhan H, Waiho K, Ikhwanuddin M. 2017b. Non-indigenous giant mud crab, *Scylla serrata* (Forskål, 1775) (Crustacea: Brachyura: Portunidae) in Malaysian coastal waters: a call for caution. *Marine Biodiversity Records* 10 Article 26

Fearing, A., Faulkner, K., Smith, P., Humbrecht, E., Kyne, P. M., Feldheim, K. A., ... & Phillips, N. M. (2025). Assessing confidence in zoological specimen collection metadata for use in scientific studies. *Journal for Nature Conservation*, 84, 126815.

Feng, Y., Li, Q., Kong, L., Zheng, X., 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. *Mol. Biol. Rep.* 38, 291-299.

Fiser, C., Robinson, C. T., & Malard, F. (2018). Cryptic species as a window into the paradigm shift of the species concept. *Molecular Ecology*, 27(3), 613-635.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c

oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol Biotechnol* 3(5):294–299

Ganguly, A. (2002). An update on conformation sensitive gel electrophoresis. *Human Mutation*, 19(4), 334-342.

Gleeson, R. A. (1982). Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, *Callinectes sapidus*. *The Biological Bulletin*, 163(1), 162-171.

Gopurenko D, Hughes JM, Keenan CP (1999) Mitochondrial DNA evidence for rapid colonization of the Indo-West Pacific by the mud crab *Scylla serrata*. *Mar Biol* 134:227–233

Grinang, J., Das, I., & Ng, P. K. (2019). Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems. *PeerJ*, 7, e6205.

Hebert, P.D.N., Ratnasingham, S., deWaard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. *Proc. R. Soc. B* 270, S96–S99.

Hideyani, A. A., Trijuno, D. D., Fujaya, Y., & Umar, M. T. (2018). The morphology and morphometric characteristics of the male swimming crab (*Portunus pelagicus*) from the East Sahul Shelf, Indonesia. *Aquaculture, Aquarium, Conservation & Legislation*, 11(6), 1724-1736.

Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. *Annual review of Ecology and Systematics*, 23-42.

Ikhwanuddin M, Azmie G, Juariah HM, Zakaria MZ, Ambak M A. 2011. Biological information and population features of mud crab, genus *Scylla* from mangrove areas of Sarawak, Malaysia. *Fisheries Research* 108:299-306

Imai H, Cheng JH, Hamasaki K, Numachi KI (2004) Identification of four mud crab species (genus *Scylla*) using ITS-1 and 16S rDNA markers. *Aquat Living Resour* 17(1):31–34

Jirapunipat, K., C. Aungtonya and S. Watanabe. 2008. Morphological study and application of multivariate analysis for the mud crab genus *Scylla* in klongnang mangrove, Ranong province, Thailand. *Phuket Marine Biological Center Research Bulletin* 69:7-24.

Kaestner A (1970) Invertebrate zoology III. Crustacea. (trans and adopted from the second German edited by HW Levi). Intersciences Publishers, New York

Kim, S. K., & Venkatesan, J. (2015). Introduction to seafood science. *Europe*, 16(19.8), 2-3.

Klinbunga S, Boonyapakdee A, Pratoomchat B. 2000. Genetic diversity and species-diagnostic markers of mud crabs (Genus *Scylla*) in eastern Thailand determined by RAPD analysis. *Marine Biotechnology* 2:180-187

Kneubehl, A. R., Muñoz-Leal, S., Filatov, S., De Clerk, D. G., Pienaar, R., Lohmeyer, K. H., ... & Lopez, J. E. (2022). Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. *Scientific Reports*, 12(1), 19310.

Kobayashi, G., & Abe, H. (2024). Cost-efficient PCR based DNA barcoding of marine invertebrate specimens with NovaSeq amplicon sequencing. *Molecular Biology Reports*, 51(1), 887.

Krell, F. T. (2004). Parataxonomy vs. taxonomy in biodiversity studies—pitfalls and applicability of ‘morphospecies’ sorting. *Biodiversity & Conservation*, 13, 795-812.

Li, N., Cai, Q., Miao, Q., Song, Z., Fang, Y., & Hu, B. (2021). High-throughput metagenomics for identification of pathogens in the clinical settings. *Small methods*, 5(1), 2000792.

Lobo, J., Ferreira, M. S., Antunes, I. C., Teixeira, M. A., Borges, L. M., Sousa, R., ... & Costa, F. O. (2017). Contrasting morphological and DNA barcode-suggested species boundaries among shallow-water amphipod fauna from the southern European Atlantic coast. *Genome*, 60(2), 147-157.

Luchini, C., Stubbs, B., Solmi, M., & Veronese, N. (2017). Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. *World Journal of Meta-Analysis*, 5(4), 80-84.

Luo, D. (2024). Quantitative Analysis of Fish Morphology Through Landmark and Outline-based Geometric Morphometrics with Free Software. *Bio-protocol*, 14(20), e5087.

Ma, H., Ma, C., & Ma, L. (2012). Molecular identification of genus *Scylla* (Decapoda: Portunidae) based on DNA barcoding and polymerase chain reaction. *Biochemical Systematics and Ecology*, 41, 41-47.

Malik, U., Malik, M., & Malik, A. (2024, November). Leveraging Deep Learning for Accurate Classification of Leptograpsus Crabs Based on Morphological Measurements. In *International Symposium on Intelligent Computing Systems* (pp. 161-175). Cham: Springer Nature Switzerland.

Mandal, A., Mani, A.K., Lamech, R. et al. Genetic Identification of all Four Mangrove Mud Crab Species (genus *Scylla*) Using Multiple Molecular Markers. *Biochem Genet* 59, 856–869 (2021). <https://doi.org/10.1007/s10528-021-10032-3>

Mandal, A., Varkey, M., Mani, A. K., Sobhanan, S. P., & Thampi-Samraj, Y. C. (2014b). Identification of Indian mangrove mud crab genus *Scylla* spp. (Brachyura: Portunidae) using RAPD and PCR-RFLP markers. *Journal of Shellfish Research*, 33(2), 503-510.

Mandal, A., Varkey, M., Sobhanan, S.P. et al. Molecular Markers Reveal Only Two Mud Crab Species of Genus *Scylla* (Brachyura: Portunidae) in Indian Coastal Waters. *Biochem Genet* 52, 338–354 (2014a). <https://doi.org/10.1007/s10528-014-9651-z>

Markert, A., Raupach, M. J., Segelken-Voigt, A., & Wehrmann, A. (2014). Molecular identification and morphological characteristics of native and invasive Asian brush-clawed crabs (Crustacea: Brachyura) from Japanese and German coasts: *Hemigrapsus penicillatus* (De Haan, 1835) versus *Hemigrapsus takanoi* Asakura & Watanabe 2005. *Organisms Diversity & Evolution*, 14, 369-382.

Market Research Future. (2025, February). Crab market research report: Information by type (blue crab, Chinese mitten, gazami crab, and other crab types), by form (frozen, canned, and other forms), and by region (North America, Europe, Asia-Pacific, and rest of the world) Market forecast till 2032. Retrieved from <https://www.marketresearchfuture.com/reports/crab-market-11526>

Matzen da Silva, J., Creer, S., Dos Santos, A., Costa, A. C., Cunha, M. R., Costa, F. O., & Carvalho, G. R. (2011). Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). *PLoS one*, 6(5), e19449.

Meiklejohn, K. A., Damaso, N., & Robertson, J. M. (2019). Assessment of BOLD and GenBank—Their accuracy and reliability for the identification of biological materials. *PloS one*, 14(6), e0217084.

Mingkid, W. M., Akiwa, S., & Watanabe, S. (2006). Morphological characteristics, pigmentation, and

distribution of the sibling penicillate crabs, *Hemigrapsus penicillatus* (De Haan, 1835) and *H. takanoi* Asakura & Watanabe, 2005 (Decapoda, Brachyura, Grapsidae) in Tokyo Bay. *Crustaceana*, 1107-1121.

Moyse, J., & Smaldon, G. (1990). *Crustacea III: Malacostraca Eucarida. The Marine Fauna of the British Isles and North-West Europe*. Clarendon Press, Oxford, 510-552.

Nadler, S. A., & DE LEÓN, G. P. P. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. *Parasitology*, 138(13), 1688-1709.

Naim, D. M., Nor, S. A. M., & Mahboob, S. (2020). Reassessment of species distribution and occurrence of mud crab (*Scylla* spp., Portunidae) in Malaysia through morphological and molecular identification. *Saudi Journal of Biological Sciences*, 27(2), 643-652.

Ng PKL (1988) The freshwater crabs of peninsular Malaysia and Singapore. Department of Zoology, National University of Singapore, Shinglee Press, Singapore, pp 1-8, 1-156

Ng, P. K. L. (1998). Crabs [pp. 1045–1155]. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific, 2, 687-1396.

Ogburn, M. B., Stuck, K. C., Heard, R. W., Wang, S. Y., & Forward Jr, R. B. (2011). Seasonal variability in morphology of blue crab, *Callinectes sapidus*, megalopae and early juvenile stage crabs, and distinguishing characteristics among co-occurring Portunidae. *Journal of Crustacean Biology*, 31(1), 106-113.

Orario, H. P., Cai, Q. W., Chua, J. K. C., Magpayo, E. S. N., Po, A. H. G., Sanchez, J. O., ... & VinceCruz-Abeledo, C. C. (2021). How Filipino fishers use traditional knowledge in identifying species of juvenile mangrove crabs for grow-out culture. *The Philippine Journal of Fisheries*, 119(128), 2021-0021.

Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. *Frontiers in zoology*, 7, 1-14.

PARVIN, I., ISLAM, K. M. N., HOQ, M. E., & ALAM, M. S. (2018). Morphometric identification of mud crabs of the genus *Scylla* available in Bangladesh waters. *Bangladesh Journal of Fisheries*, 30(2), 195-206.

Patwardhan, A., Ray, S., & Roy, A. (2014). Molecular markers in phylogenetic studies-a review. *Journal of Phylogenetics & Evolutionary Biology*, 2(2), 131.

Peres, P. A. D. S. (2021). Patterns and processes of the genetic diversity in crabs (Decapoda, Brachyura): integrative approach with biological, ecological, and demographic traits (Doctoral dissertation, Universidade de São Paulo).

Peter K. L. Ng, Danièle Guinot & Peter J. F. Davie (2008). "Systema Brachyurorum: Part I. An annotated checklist of extant Brachyuran crabs of the world" (PDF). *Raffles Bulletin of Zoology*. 17: 1–286.

Radulovici, A. (2012). A tale of two biodiversity levels inferred from DNA barcoding of selected North Atlantic crustaceans (Doctoral dissertation, Université du Québec à Montréal).

RAHAYU, D. A., AMBARWATI, R., FAIZAH, U., NUGROHO, E. D., RUSDIANTO, R., AJININGRUM, P. S., & MAMAT, N. B. (2024). Genetic diversity and phylogenetic reconstruction of horseshoe crabs from East Java, Indonesia based on DNA barcode COI. *Biodiversitas Journal of Biological Diversity*, 25(10).

Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: a primer for the natural products research community. *Journal of natural products*, 80(3), 756-770.

Rajkumar, P., Rollmann, S. M., Cook, T. A., & Layne, J. E. (2010). Molecular evidence for color discrimination in the Atlantic sand fiddler crab, *Uca pugilator*. *Journal of Experimental Biology*, 213(24), 4240-4248.

Rebijith, K. B., Asokan, R., Hande, H. R., Joshi, S., Surveswaran, S., Ramamurthy, V. V., & Krishna Kumar, N. K. (2017). Reconstructing the macroevolutionary patterns of aphids (Hemiptera: Aphididae) using nuclear and mitochondrial DNA sequences. *Biological Journal of the Linnean Society*, 121(4), 796-814.

Reiter, L. N., Thomsen, T. B., Heredia, B. D., Leclercq Samson, A., Wielandt, D. K. P., Heide-Jørgensen, M. P., ... & Garde, E. (2025). Chronicles in Ivory: Estimating the age of narwhals (*Monodon monoceros*) through stochastic modelling of seasonally varying trace elements. *Frontiers in Marine Science*, 12, 1655427.

Resh, V. H., Hildrew, A. G., Statzner, B., & Townsend, C. R. (1994). Theoretical habitat templets, species traits, and species richness: a synthesis of long-term ecological research on the Upper Rhône River in the context of concurrently developed ecological theory. *Freshwater Biology*, 31(3), 539-554.

Reuschel, S., & Schubart, C. D. (2007). Contrasting genetic diversity with phenotypic diversity in coloration and size in *Xantho poressa* (Brachyura: Xanthidae), with new results on its ecology. *Marine Ecology*, 28(2), 296-305.

Rezaei Tavabe, K., Tavana, M., Mirvaghefi, A.R. et al. Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda: Brachyura). *Sci Rep* 12, 8288 (2022). <https://doi.org/10.1038/s41598-022-12335-w>

Rice, A. L. (1980). Crab zoeal morphology and its bearing on the classification of the Brachyura. *The Transactions of the Zoological Society of London*, 35(3), 271-372.

Rieder, J., Jemmi, E., Hunter, M. E., & Adrian-Kalchhauser, I. (2024). A Guide to Environmental DNA Extractions for Non-Molecular Trained Biologists, Ecologists, and Conservation Scientists. *Environmental DNA*, 6(5), e70002.

Robeson, M. S., O'Rourke, D. R., Kaehler, B. D., Ziemske, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2021). RESCIPI: Reproducible sequence taxonomy reference database management. *PLoS computational biology*, 17(11), e1009581.

Roehrdanz RL (1993) An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. *Insect Mol Biol* 2:89–91

Rohland, N., Glocke, I., Aximu-Petri, A., & Meyer, M. (2018). Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. *Nature protocols*, 13(11), 2447-2461.

Rouf, M. A., Shahriar, S. I. M., Sarower, M. G., & Ahsan, M. N. (2016). Taxonomic clarification of mud crab species of genus *Scylla* (Brachyura: Portunidae) available in the Coastal Regions of Bangladesh. *Asian Fisheries Science*, 29(3).

Rustikasari, I., Paransa, D. S., Kaligis, E. Y., Ompi, M., Pelle, W. E., & Pratasik, S. B. (2021). Morphological identification of crabs in the rocky coast of Manado Bay. *Jurnal Ilmiah PLATAX*, 9(2), 210-216.

Sanford, E., Holzman, S. B., Haney, R. A., Rand, D. M., & Bertness, M. D. (2006). Larval tolerance, gene flow, and

the northern geographic range limit of fiddler crabs. *Ecology*, 87(11), 2882-2894.

Schindel, D.E., Miller, S.E., 2005. DNA barcoding a useful tool for taxonomists. *Nature* 435, 17

Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., ... & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. *Database*, 2020, baaa062.

Schubart, C., Cuesta, J. A., & Rodríguez, A. (2001). Molecular phylogeny of the crab genus *Brachynotus* (Brachyura: Varunidae) based on the 16S rRNA gene. *Hydrobiologia*, 449, 41-46.

Serène, R. (1984). Crustacés Décapodes Brachyures de l'océan Indien occidental et de la mer Rouge, Xanthoidea: Xanthidae et Trapeziidae. Avec un addendum par Crosnier A.: Carpiliidae et Menippidae. *Faune tropicale*, 24, 1-243.

Smith, P. J., Webber, W. R., McVeagh, S. M., Inglis, G. J., & Gust, N. (2003). DNA and morphological identification of an invasive swimming crab, *Charybdis japonica*, in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research*, 37(4), 753-762.

Spooner, D. M., van Treuren, R., & De Vicente, M. C. (2005). Molecular markers for genebank management (No. 10). Bioversity International.

Stephenson, W. (1972). An annotated checklist and key to the Indo-West-Pacific swimming crabs (Crustacea: Decapoda: Portunidae). *Bulletin of the Royal Society of New Zealand*, 1-64.

Stewart, B. A., & Cook, P. A. (1998). Identification of a new species of river crab (Decapoda: Brachyura: Potamonautesidae) from South Africa using morphological and genetic data. *Journal of Crustacean Biology*, 18(3), 556-571.

Sturmbauer, C., Levinton, J. S., & Christy, J. (1996). Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. *Proceedings of the National Academy of Sciences*, 93(20), 10855-10857.

Subbotin, S. A. (2021). Phylogenetic analysis of DNA sequence data. In *Techniques for work with plant and soil nematodes* (pp. 265-282). Wallingford UK: CABI.

Sultana, Z., Babarinde, I. A., & Asakura, A. (2022). Diversity and molecular phylogeny of pagurid hermit crabs (Anomura: Paguridae: *Pagurus*). *Diversity*, 14(2), 141.

Takano, M., Ikeda, M., & Kijima, A. (1997). Biochemical and morphological evidence of two sympatric forms, interpreted as sibling species, in the estuarine grapsid crab *Hemigrapsus penicillatus* (De Haan). *Benthos Research*, 52(2), 111-117.

Thapliyal, P., Sah, V., Rautela, I., Joshi, M., Tyagi, S., Verma, R., & Sharma, M. D. (2024). Next Generation Sequencing: Latent Applications in Clinical Diagnostics with the advent of Bioinformatic Frameworks. *Pathology-Research and Practice*, 155606.

Thurman, C. L., Alber, R. E., Hopkins, M. J., & Shih, H. T. (2021). Morphological and Genetic Variation Among Populations of the Fiddler Crab *Minucia burgersi* (Holthuis, 1967) (Crustacea: Brachyura: Ocipodidae) from Shores of the Caribbean Basin and Western South Atlantic Ocean. *Zoological studies*, 60, e19. <https://doi.org/10.6620/ZS.2021.60-19>

Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C., Au, E. Y., Chan, T. Y., Ng, P. K., & Chu, K. H. (2014). Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs. *Molecular biology and evolution*, 31(5), 1173-1187. <https://doi.org/10.1093/molbev/msu068>

Van Cise, A. M., Switzer, A. D., Apprill, A., Champagne, C. D., Chittaro, P. M., Dudek, N. K., ... & Parsons, K. M. (2024). Best practices for collecting and preserving marine mammal biological samples in the 'omics era. *Marine Mammal Science*, e13148.

Vences, M., Thomas, M., Van der Meijden, A., Chiari, Y., & Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. *Frontiers in zoology*, 2, 1-12.

Vermeiren, P., Lennard, C., & Trave, C. (2021). Habitat, sexual and allometric influences on morphological traits of intertidal crabs. *Estuaries and Coasts*, 44(5), 1344-1362.

Versmessen, N., Van Simaey, L., Negash, A. A., Vandekerckhove, M., Hulpiau, P., Vaneechoutte, M., & Cools, P. (2024). Comparison of DeNovix, NanoDrop and Qubit for DNA quantification and impurity detection of bacterial DNA extracts. *PLoS one*, 19(6), e0305650.

Vincecruz-Abeledo, C. C., & Lagman, M. C. A. (2018). A revised dichotomous key for the mangrove crab genus *scylla* de haan, 1833 (brachyura, portunidae). *Crustaceana*, 91(7), 847-865.

Waiho K, Fazhan H, Ikhwanuddin M. 2016b. Size distribution, length-weight relationship and size at the onset of sexual maturity of the orange mud crab, *Scylla olivacea* in Malaysian waters. *Marine Biology Research* 12:726-738

Waiho K, Fazhan H, Quinitio ET, Baylon JC, Fujaya Y, Azmie G, Wu Q, Shi X, Ikhwanuddin M, Ma H. 2018. Larval rearing of mud crab (*Scylla*): what lies ahead. *Aquaculture* 493:37-50

Xu, Y., Xue, J., Liu, H., Jiang, T., Chen, X., & Yang, J. (2023). Identification of "Bathed" Chinese Mitten Crabs (*Eriocheir sinensis*) Using Geometric Morphological Analysis of the Carapace. *Fishes*, 9(1), 6.

Yamasaki, I., Doi, W., Mingkid, W. M., Yokota, M., Strüssmann, C. A., & Watanabe, S. (2011). Molecular-based Method to distinguish the sibling species *Hemigrapsus penicillatus* and *Hemigrapsus takanoi* (Decapoda: Brachyura: Vanuridae). *Journal of Crustacean Biology*, 31, 577-581

Yang, N., Zhang, H., Han, X., Liu, Z., & Lu, Y. (2024). Advancements and applications of loop-mediated isothermal amplification technology: a comprehensive overview. *Frontiers in Microbiology*, 15, 1406632.

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC bioinformatics*, 13, 1-11.

Yoon, J. M. (2022). PCR analysis for genetic distances of two *Charybdis* crab populations. *Development & Reproduction*, 26(2), 91.

Zhou, X., & Rokas, A. (2014). Prevention, diagnosis and treatment of high-throughput sequencing data pathologies. *Molecular ecology*, 23(7), 1679-1700.

Zimmermann, J., Hajibabaei, M., Blackburn, D. C., Hanken, J., Cantin, E., Posfai, J., & Evans, T. C. (2008). DNA damage in preserved specimens and tissue samples: a molecular assessment. *Frontiers in Zoology*, 5, 1-13.